
A Systematic Strategy for High Performance
CIS

Liujian Qian Donna J. Peuquet

Department of Geography
The Pennsylvania State University

University Park, PA 16802 USA
qian/peuquet @geog. psu. edu

ABSTRACT

High Performance Computing is becoming increasingly important to large 
GIS applications, where the ability to store and access huge amounts of 
social and environmental data is crucial. In this paper we propose a sys 
tematic strategy using what we term a virtual grid; a quadtree-based de 
composition of space used for the balanced allocation of distributed storage 
space. We also introduce the concept of a quadtree spatial signature as 
a highly compact spatial index for storage and retrieval. Our proposal is 
generic in the sense that it addresses problems at all levels of a high perfor 
mance spatial database system, from the physical implementation of data 
storage and access methods to the user level for spatial query and anal 
ysis, with the underlying parallel computing model being an increasingly 
popular Network of Workstations (NOW).

1 Introduction: Parallelism in Different Lev 
els of GIS

Efficient handling of spatial data is a growing concern for GIS as the amount 
of data available, indeed necessary, for addressing urban and environmen 
tal issues continues to increase. Terrabytes of data are now available from 
various governmental agencies. All levels of a GIS, from data storage to 
in-memory spatial operations and algorithms, can benefit from efficient 
partitioning and parallel computing strategies. A number of articles have 
been published in the topic of parallel strategies for GIS. Most of these, 
however, have concentrated on individual spatial data structures or algo 
rithms [Wag92], [DDA92]. The more broad-ranging problem toward High

145



Performance GIS (HPGIS), however, is how to partition large amounts of 
complex and often highly interrelated data so that multiple computers can 
each be assigned a fraction of the data and complete the task cooperatively 
and effectively regardless of the task.
The physical implementation of any file structure involves allocating disk 
storage in units of fixed size. These are called disk blocks, pages or buckets, 
depending upon the level of description. We will use the term buckets. Con 
ceptually, a bucket is simply a unit of storage containing a number of data 
records. Significantly enhanced performance in accessing large amounts of 
data can be achieved if the multiple buckets needed to satisfy a single query 
can be accessed simultaneously (i.e., in parallel). This can be achieved by 
distributing the set of buckets representing an individual data layer over 
multiple physical storage units. For locationally-based queries, maximal ef 
ficiency is achieved when the data are evenly distributed among the buckets 
on the basis of their locational value. However, the geographic distribution 
of data elements is typically highly variable, and often very clustered. More 
over, geographic distributions tend to be variable over time. Most existing 
GISs do not presume any correspondence whatsoever between conceptual 
ordering and physical distribution in storage. Since most GISs store data in 
unordered pages of a file, some kind of spatial indexing must be employed 
in order to avoid the inspecting large portions of the database unneces 
sarily. The virtual grid organization described in this paper is proposed 
as an effective method for mapping of the geographical distribution of a 
data layer to a physical storage distribution. The method proposed has it's 
root in a balanced"file structure called Grid File originally developed for a 
non-spatial context in [NH84].
Spatial indexing structures currently used for geographic databases include 
K-D-B trees, R-trees, Grid Files, and quadtrees, among many others (see 
[Sam90] for a thorough review). These indexing structures usually store 
key-pointer pairs where the 'key' is the identifying spatial attribute or 
shape, and 'pointer' is the address of the whole record stored in the un 
ordered data file. The idea behind all spatial indexing schemes is to subdi 
vide a large search space into multiple smaller search spaces, so that only 
those potentially relevant (and much smaller) parts need to be actually 
examined for given query predicates.
There are important differences among the ways various indexing structures 
split the search space. The two fundamental approaches, following the two 
basic types of geographic data models, can be described as space-based 
vs. object-based partitionings [NH84]. An index structure where partitions 
are designed to contain, and to not subdivide objects, such as in R-trees 
[Gut84], has object-based partitions. Other examples of this partitioning 
strategy are K-D trees [Ben75] where the partitioning boundaries are drawn 
based on the location of the point data being indexed.

146



If, on the other hand, the partition boundaries are drawn symmetric to 
all dimensions regardless of any particular object's location it is a space- 
based partitioning scheme. Quadtrees are the best-known example of this 
partitioning strategy. Another distinction can be made among space-based 
partitioning techniques depending on whether or not the partitioning is reg 
ular. The area quadtree is a regular space-based partition index, because 
it always splits an area into four equal parts. In contrast, the Grid File 
as adopted in another high-performance GIS context [CSZ93] is an irregu 
lar space-based partitioning scheme, since it divides the space into variable 
intervals along each dimension. Below is a figure that illustrates these dif 
ferent partitioning schemes. Figure l(a) represents an example partitioning 
for an R-tree, where each rectangle is a minimum rectangle that contains 
a set of objects or smaller bounding rectangles. Figure l(b) represents the 
partitioning for a K-D tree. The irregular spatial subdivision of a Grid 
File is depicted by Figure l(c) while the Figure l(d) illustrates the regular 
spatial subdivision of an area quadtree.

(a) (b) (d)

Figure 1: Patterns of Spatial Partitions

Although the R-tree, K-D tree and derivative methods have gained atten 
tion recently for indexing geographic databases for storage and retrieval, the 
area quadtree provides two significant advantages for parallel spatial index 
ing in a GIS context due to the regular subdivision of space. First, this 
allows for an even allocation of data records into buckets to be performed 
more easily. Although homogeneous areas or objects may be subdivided 
into different buckets for storage, the even allocation of data among multi 
ple buckets becomes a more straightforward task. Second, the more direct 
mapping between geographic location and bucket allocation makes parallel 
retrieval of multiple layers on the basis of location a much simpler task. 
These features will be further explained in the discussion later.

147



2 Balanced Storage Allocation

In this section we describe the notion of the virtual grid, a quadtree based 
space decomposition and spatial data storage strategy.

2.1 Concept of the Virtual Grid Spatial Data Storage 
Model

The basic idea of the virtual ~grid is quite simple. The space or geographic 
area of interest is subdivided in the same manner as in normal area quadtree 
subdivisions. When to stop the decomposition is determined by the total 
volume of data within the resultant cells after each subdivision. Thus, an 
area with sparse data will result in few subdivisions and an area with a 
dense distribution will, result in relatively more subdivisions. The result 
of the decomposition is a set of variably-sized tiles that covers entire area, 
with each tile corresponding to a leaf node in the quadtree. For each spatial 
tile, there is one data "bucket" associated with it that stores all the data 
which fall within the geographical area represented by that tile. We call 
our quadtree-based storage model a virtual grid for several reasons. First, 
the spatial resolutions of the stored data are not hierarchical, and the sub 
division does not need to continue until only homogeneous spatial data are 
contained in the tile. The resulting set of partitions is a grid with variable- 
size tiles. Second, this irregular grid is a partitioning scheme only, with the 
individual tiles created by this partitioning potentially dispersed on differ 
ent disks, as well as on different machines. Third, "the subdivision bears 
no relation to the storage format used for the data themselves. The data 
within the subdivisions for any given data layer can be stored as vectors or 
pixels in accordance with the nature of the data.
Figure 2 illustrates the relationships between the individual tiles and data 
buckets for a given partitioning. The philosophy behind the use of the 
quadtree as a regular, hierarchical, location-based partitioning method stems 
from the simplicity of the area quadtree scheme, such as described in 
[Peu84]. The essential notion here is to provide a mechanism to even-out 
physical storage for what can be highly uneven and variable data distribu 
tions over geographic space, while still allowing efficient data retrieval for 
overlay and other layer-based operations.
Figure 2 (a) represents a set of geographical data forming a layer of, say, 
land use on a set of islands. Figure 2(b) is the tiling of the corresponding 
layer, where there are 13 tiles numbered from 0 to 12. In figure 2 each 
tile is seen to correspond to a quadtree leaf node, with the whole quadtree 
(including both internal and leaf nodes) shown in Figure 2(c). If the data 
for a particular region are more dense than others, that region is always 
further divided into smaller tiles so that the volume of data contained within

148



Figure 2: virtual grid, tiles, buckets and their relationships

any individual tile is approximately equal, regardless of the size of the 
geographical area represented.

2.2 Construction of a Virtual Grid

Now we consider how to construct a virtual grid for an individual layer of 
geographic data. It is worth mentioning that during the construction of the 
virtual grid we actually maintain a quadtree in memory to keep track of 
the levels and areas of the subdivision. As stated above, the level at which 
subdivision stops is totally determined by the amount of data contained 
within a tile. This amount is dictated by the size of a single bucket. All 
buckets are equal in their maximum size or capacity.
Given the bucket size, we now briefly describe how to store raw data records 
into a database in the sequence of Morton order, or equivalently speaking, 
how to the build the virtual grid (and hence the corresponding quadtree) 
in a bottom-up manner, in contrast to the normal top-down method.
The procedure is that we sort the raw data records first using the Morton 
order (or Z-order). This may involve calculating the Morton address for 
each record and sorting the records based on their addresses. Once sorted, 
we scan the records and add them sequentially into a bucket until it's 
capacity is reached. At this point we examine the Morton address of the last 
spatial object stored into the bucket, from which we are able to determine 
what is the smallest tile or quadtree node that should be associated with 
the bucket.
The following is an example showing how we load a set of spatial point data 
into a virtual grid using the bottom-up process.

149



2 : s / • /'

V V V V V
A B C D F

(a)
(b)

Figure 3: construction of a virtual grid

In Figure 3 we assume each bucket can hold 3 points, and the 15 data points 
to be stored have been labeled with Morton addresses and sorted. Upon 
the addition of the first three data points into a bucket, with the last point 
having a Morton address of 15, we form the corresponding tile A (which 
is associated with the bucket,) and it's three sibling quadrants, which have 
no buckets associated yet. Repeat this procedure and we eventually have 5 
buckets with corresponding tiles being those black leaf nodes of the quadtree 
shown in figure 3.
The bucket size, as an important system parameter, has to be determined 
before raw data can be loaded into the database. As for most high perfor 
mance database storage strategies, there is the issue of optimization: What 
bucket size provides the optimal performance given the distribution charac 
teristics for a specific type of data? If the bucket size is too large, then the 
speed efficiency of doing operations in parallel is not fully realized. If the 
bucket size is too small, then the increased traffic of I/O operations caused 
by doing too many separate data access operations simultaneously can by 
itself slow down a computer, and indeed an entire computer network.
During the construction of a virtual grid, splitting of (large) objects may 
occur as a consequence of reallocating an overflow bucket. In our virtual 
grid storage model, when a bucket overflows, we subdivide it's correspond 
ing tile into 4 equal quadrants; and reallocate the data in the bucket into at 
most four new buckets, depending on the data distribution in the original 
tile. During this subdivision and reallocation, if an object is large enough 
to cover more than one sub-tiles, we will split it and store partial objects 
into new buckets where they belong.
The last step of constructing a virtual grid will always be to construct a 
,compact description of it, called a quadtree spatial signature, to be described 
in next section, and store the signature in the database catalog along with 
other meta information of a data layer.

150



3 Quadtree Spatial Signature

The whole idea behind the virtual grid notion is that when time-consuming 
operations over large volumes of data are to be performed in parallel, us 
ing a "divide and conquer" approach, we need to physically map buckets 
onto multiple physical storage areas in order to achieve three things; 1.) 
physically balance the load for large data access operations, 2.) provide 
an efficient indexing mechanism so that the physical location in storage of 
any given data element can be determined quickly and with a minimum 
amount of disk access, and 3.) when doing spatial join of multiple lay 
ers, we can have an intuitive approach to associate geographically-relevant 
buckets from different layers onto multiple computers, due to the nature of 
the virtual grid.
In this section we present our method for achieving this, utilizing something 
we call the quadtree spatial signature.
We define a quadtree spatial signature as a compact mapping of where data 
elements are located spatially into a search path within quadtree-space. 
Since quadtree subdivision was used to create the data tiles, this provides 
a quick index that quickly eliminates consideration of any geographical 
areas that are "blank" as far as the data in question. It also provides a 
rapid conversion from geographic space to storage location, and due to the 
regularity, it provides an intuitive method of assigning buckets of different 
data layers based on geographical relationships, which will greatly enhance 
the effectiveness of parallel processing of multiple layers.

Given a quadtree, it's spatial signature is simply a set of bitmap strings, 
with each level of the quadtree having one bitmap string, as shown in Figure 
4. For any given level of a quadtree, the bitmap string is an array of value 
'00', '01' or 'll's, based on the type of a corresponding tree node in that 
level. An internal node is labeled as '01', while empty leaf nodes are labeled 
as '00', and black leaf nodes (which have data in corresponding buckets) 
are 'll's. Note that even if, for a particular level, there is no tree nodes 
at all, we still assign '00's to their corresponding positions in the bitmap 
array, because our bitmap strings represent a complete quadtree.
At a first glance the size of our signature may seem to be quite large, 
since it records information for every nodes of a complete quadtree. But 
in implementation one can always use compression methods such as run- 
length encoding to store the bitmap, as there are many repeated 'O's or '1's; 
and the size of such a quadtree signature is actually quite small (about less 
than hundred KBytes for a quadtree of 10 levels).

Our spatial quadtree signature has the following properties:

151



'•A-

C«
4
»D E

F •

3 
• G

. 2 
H.

I* J.

• K
•L

M
Sig(Q)=

(a)

/ 1: 01
2: 01 11 1101 16'O's
3: 01 n00110000...000001 noon
4: n n n iioooo...ooopn 11 oo 11 oooo...ooqp

24 'O's 24 'O's 
(C)

Figure 4: An example of quadtree spatial signature

• Morton addresses or Z-order numbers are used as an index inside the 
bitmap array of each level. The Morton address for each quadtree 
node in a given level is calculated using the spatial scale corresponding 
to that level. In this way the status of any tree node in that level 
can be obtained by calculating it's Morton address and index into the 
bitmap array. For example, in Figure 4, the bitmap string for level 2 
is '01', '11', '11', '01', indicating that the four nodes (whose Morton 
addresses are labeled as 1,2,3,4 in Figure 4(a)) are internal nodes, leaf 
nodes, leaf nodes and internal nodes respectively.

• For an internal node in a higher level with Morton address N, the 
status of it's four quadrants can be obtained by looking up in the 
bitmap array of the next level at those positions from (N-l)*4 to 
N*4. Similar direct determination is possible from a child node to it's 
parent node.

• For a bitmap array, only those elements with value '11' are leaf nodes 
that have buckets associated with them. The number of tiles of a par 
ticular size in our virtual grid can be easily obtained by scanning the 
corresponding level's bitmap array and count the number of elements 
with value '11'.

• This set of bitmap arrays can serve as a spatial index; and mappings 
between '11'-valued elements (tiles) and actual storage buckets can 
be easily established based on the level number and array index for 
the elements. This removes the need for disk-based spatial indexing 
structures such as R-trees or K-D-B trees; and converts spatial search 
into in-memory calculations based on the set of bitmap arrays and 
searching rectangles (used in range search). The bitmap arrays also 
remove the need for maintaining expansive quadtree structures in

152



memory, since all the information has been retained in the set of 
bitmap arrays.

• The data distribution information at different spatial scales (tree lev 
els) are maintained in the different levels of bitmap arrays. This is 
useful for scale-sensitive operations.

One of the most important rules to follow in applying parallel strategies 
to spatial operations, is that the load allocation algorithm must take into 
account not only how to balance the amount of data to be processed indi 
vidually, but also how to assure that the data allocated to a computer are 
as geographically clustered as possible in data-space.
Below we will briefly describe how to use our quadtree spatial signature in 
balancing load that meets these two requirements, on a simple but increas 
ingly popular parallel computing model of NOW (Network of off-the-shelf 
Workstations), where a master computer allocates data buckets to multiple 
slave computers so that spatial operations can be performed locally and 
concurrently by each slave on the protion of data it receives.
The main allocation procedure (for single-layer based operations), is that 
for each bitmap array, we maintain a cursor indicating the next un-allocated 
bucket (tile) in that level. Starting from the left-most '11' element of all 
the arrays, which is the first tile in our virtual grid, advance the cursor in 
that array for following consecutive '11's, until the limit of bucket number 
for one computer is reached or an element of different value is encountered. 
In the first case, we allocate the set of buckets traversed to the first slave, 
and continue for the next slave; in the second case, where we encounter a 
different type of element, we will need to look at the array either above 
or below the current array, based on whether the element with non-'ll' 
value is an empty node or internal node. We then advance the cursor in 
the other array in a similar manner until we find the first '11' elements, 
and records all the consecutive elements of '11's as the set of buckets to be 
allocated to next available slave computer. We then repeat this step until 
all the buckets have been allocated; or the available slave computers are 
exhausted.
For the example virtual grid of Figure 4, if we assume each processor can 
handle at most 3 buckets of data, then using the above algorithm will 
result the sets of tiles like (A,B,C), (D,E,F), (G, H, I), (J,K,L), and (M). 
This allocation is well-balanced and presents a good level of geographical 
adjacency among tiles within each working set.

153



4 Conclusion

In this paper we presented a systematic strategy for high performance GISs 
that need to deal with very large data volumes. We proposed a virtual grid 
structure for distributing the storage of unevenly distributed spatial data in 
an even way; and suggested that a simple structure called the quadtree spa 
tial signature can be effectively used in guiding the dividing of work load for 
time-consuming spatial operations. Finally, we want to emphasize that our 
method may also be extended into hexagonal and triangular tessellations 
as well.

References

[Ben75] J. L. Bentley. Multidimensional search trees used for associative 
searching. Communications of the ACM, 18:509-517, 1975.

[CSZ93] Mark Coyle, Shashi Shekhar, and Yvonne Zhou. Evaluation of 
disk allocation mehtods for parallelizing spatial queries on grid 
files. In Data Engineering Conference, 1993.

[DDA92] Yuemin Ding, Paul J. Densham, and Marc P. Armstrong. Par 
allel processing for network analysis: Decomposing shortest path 
algorithm for MIMD computers. In Proceedings of the 5th Inter 
national Symposium on Spatial Data Handling, pages 682-691, 
Charleston, South Carolina, 1992.

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial 
searching. SIGMOD Record, 14, No. 2:47-57, 1984.

[NH84] J. Nievergelt and H. Hinterberger. The grid file: An adapt 
able, symmetric, multikey file strcuture. ACM TODS, 9(1):38-71, 
1984.

[Peu84] Donna J. Peuquet. A conceptual framework and comparison of 
spatial data models. Cartographica, 21:66 -113, 1984.

[Sam90] Hanan Samet. The Design and Analysis of Spatial Data Struc 
tures. Addison-Wesley, Reading, Mass., 1990.

[Wag92] Daniel F. Wagner. Synthetic test design for systematic evaluation 
of geographic information systems performance. In Proceedings 
of the 5th International Symposium on Spatial Data Handling, 
pages 166-177, Charleston, South Carolina, 1992.

154




